Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.069
Filtrar
1.
Methods Mol Biol ; 2797: 287-297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570468

RESUMO

Dysfunction of the RAS/mitogen-activated protein kinase (MAPK) pathway is a common driver of human cancers. As such, both the master regulator of the pathway, RAS, and its proximal kinase effectors, RAFs, have been of interest as drug targets for decades. Importantly, signaling within the RAS/MAPK pathway is highly coordinated due to the formation of a higher-order complex called the RAS/RAF signalosome, which may minimally contain dimers of both RAS and RAF protomers. In the disease state, RAS and RAF assemble in homo- and/or heterodimeric forms. Traditionally, drug development campaigns for both RAS and RAF have utilized biochemical assays of purified recombinant protein. As these assays do not query the RAS or RAF proteins in their full-length and complexed forms in cells, potency results collected using these assays have often failed to correlate with inhibition of the MAPK pathway. To more accurately quantify engagement at this signaling components, we present a bioluminescence resonance energy transfer (BRET)-based method to conditionally measure target engagement at individual protomers within the RAS/RAF signalosome in live cells.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Proto-Oncogênicas c-raf , Humanos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Subunidades Proteicas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais
2.
Parasitol Res ; 123(4): 189, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639821

RESUMO

Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 µg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.


Assuntos
NF-kappa B , Toxocara canis , Animais , Camundongos , NF-kappa B/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Toxocara canis/metabolismo , Transdução de Sinais/fisiologia , Macrófagos
3.
Int J Hyperthermia ; 41(1): 2335199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38565204

RESUMO

PURPOSE: c-Jun N-terminal kinases (JNKs) comprise a subfamily of mitogen-activated protein kinases (MAPKs). The JNK group is known to be activated by a variety of stimuli. However, the molecular mechanism underlying heat-induced JNK activation is largely unknown. The aim of this study was to clarify how JNK activity is stimulated by heat. METHODS AND MATERIALS: The expression levels of various MAPK members in HeLa cells, with or without hyperthermia treatment, were evaluated via western blotting. The kinase activity of MAPK members was assessed through in vitro kinase assays. Cell death was assessed in the absence or presence of siRNAs targeting MAPK-related members. RESULTS: Hyperthermia decreased the levels of MAP3Ks, such as ASK1 and MLK3 which are JNK kinase kinase members, but not those of the downstream MAP2K/SEK1 and MAPK/JNK. Despite the reduced or transient phosphorylation of ASK1, MLK3, or SEK1, downstream JNK was phosphorylated in a temperature-dependent manner. In vitro kinase assays demonstrated that heat did not directly stimulate SEK1 or JNK. However, the expression levels of DUSP16, a JNK phosphatase, were decreased upon hyperthermia treatment. DUSP16 knockdown enhanced the heat-induced activation of ASK1-SEK1-JNK pathway and apoptosis. CONCLUSION: JNK was activated in a temperature-dependent manner despite reduced or transient phosphorylation of the upstream MAP3K and MAP2K. Hyperthermia-induced degradation of DUSP16 may induce activation of the ASK1-SEK1-JNK pathway and subsequent apoptosis.


Assuntos
Hipertermia Induzida , Sistema de Sinalização das MAP Quinases , Humanos , Células HeLa , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Apoptose/fisiologia
4.
Sci Rep ; 14(1): 8922, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637565

RESUMO

The Bmp/Smad1 pathway plays a crucial role in developmental processes and tissue homeostasis. Mitogen-activated protein kinase (Mapk)/Erk mediated phosphorylation of Smad1 in the linker region leads to Smad1 degradation, cytoplasmic retention and inhibition of Bmp/Smad1 signaling. While Fgf/Erk pathway has been documented to inhibit Bmp/Smad1 signaling, several studies also suggests the cooperative interaction between these two pathways in different context. However, the precise role and molecular pathway of this collaborative interaction remain obscure. Here, we identified Xbra induced by Fgf/Erk signaling as a factor in a protective mechanism for Smad1. Xbra physically interacted with the linker region phosphorylated Smad1 to make Xbra/Smad1/Smad4 trimeric complex, leading to Smad1 nuclear localization and protecting it from ubiquitin-mediated proteasomal degradation. This interaction of Xbra/Smad1/Smad4 led to sustained nuclear localization of Smad1 and the upregulation of lateral mesoderm genes, while concurrently suppression of neural and blood forming genes. Taken together, the results suggests Xbra-dependent cooperative interplays between Fgf/Erk and Bmp/Smad1 signaling during lateral mesoderm specification in Xenopus embryos.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Transdução de Sinais , Animais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sistema Nervoso/metabolismo , Fosforilação , Proteína Smad1/genética , Proteína Smad1/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
5.
Allergol Immunopathol (Madr) ; 52(2): 60-67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38459892

RESUMO

OBJECTIVE: To explore the role of Y-box binding protein 1 (YBX-1) in the lipopolysaccharide (LPS)-stimulated inflammation and oxidative stress of BEAS-2B cell line and clarify the underlying mechanism. METHODS: LPS-stimulated BEAS-2B cells were used as a cell model of sepsis-stimulated acute lung injury (ALI). Immunoblot and quantitative polymerase chain reaction assays were used to detect the expression of YBX-1 in LPS-stimulated BEAS-2B cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, TdT-mediated dUTP nick end labeling, and immunoblot assays were conducted to determine the effects of YBX-1 on cell survival. JC-1 staining and adenosine triphosphate production were used to detect the effects of YBX-1 on mitochondrial function. Immunostaining and enzyme-linked immunosorbent serologic assay were performed to examine the effects of YBX-1 on the inflammation and oxidative stress of cells. Immunoblot assay was conducted to confirm the mechanism. RESULTS: YBX-1 was lowly expressed in LPS-stimulated BEAS-2B cells and enhanced the survival of LPS-stimulated lung epithelial cells. In addition, YBX-1 improved mitochondrial function of LPS-stimulated BEAS-2B cells. YBX-1 inhibited the inflammation and oxidative stress of LPS-stimulated BEAS-2B cells. Mechanically, YBX-1 inhibited mitogen-activated protein kinase (MAPK) axis, thereby alleviating sepsis-stimulated ALI. CONCLUSION: YBX-1 alleviated inflammation and oxidative stress of LPS-stimulated BEAS-2B cells via MAPK axis.


Assuntos
Lesão Pulmonar Aguda , Sepse , Proteína 1 de Ligação a Y-Box , Humanos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Sepse/complicações , Sepse/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
6.
Eur J Pharmacol ; 970: 176435, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428663

RESUMO

Punicalagin (PUN) is a polyphenol derived from the pomegranate peel. It has been reported to have many beneficial effects, including anti-inflammatory, anti-oxidant, and anti-proliferation. However, the role of PUN in macrophage phagocytosis is currently unknown. In this study, we found that pre-treatment with PUN significantly enhanced phagocytosis by macrophages in a time- and dose-dependent manner in vitro. Moreover, KEGG enrichment analysis by RNA-sequencing showed that differentially expressed genes following PUN treatment were significantly enriched in phagocyte-related receptors, such as the C-type lectin receptor signaling pathway. Among the C-type lectin receptor family, Mincle (Clec4e) significantly increased at the mRNA and protein level after PUN treatment, as shown by qRT-PCR and western blotting. Small interfering RNA (siRNA) mediated knockdown of Mincle in macrophages resulted in down regulation of phagocytosis. Furthermore, western blotting showed that PUN treatment enhanced the phosphorylation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) in macrophages at the early stage. Mincle-mediated phagocytosis by PUN was inhibited by PDTC (a NF-κB inhibitor) and SB203580 (a p38 MAPK inhibitor). In addition, PUN pre-treatment enhanced phagocytosis by peritoneal and alveolar macrophages in vivo. After intraperitoneal injection of Escherichia coli (E.coli), the bacterial load of peritoneal lavage fluid and peripheral blood in PUN pre-treated mice decreased significantly. Similarly, the number of bacteria in the lung tissue significantly reduced after intranasal administration of Pseudomonas aeruginosa (PAO1). Taken together, our results reveal that PUN enhances bacterial clearance in mice by activating the NF-κB and MAPK pathways and upregulating C-type lectin receptor expression to enhance phagocytosis by macrophages.


Assuntos
Taninos Hidrolisáveis , Macrófagos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Fagocitose , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antioxidantes/farmacologia , Lectinas Tipo C/metabolismo
7.
Mol Biol Rep ; 51(1): 471, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551706

RESUMO

BACKGROUND: Wound healing is one of the important processes in the body. Attempts to create new drugs are of interest due to the side effects of natural and chemical wound healing compounds. To overcome this obstacle, stem cells have been used as healing agents. However, both difficulties in collection and risks such as rejection and teratoma in the recipient body have limited the use of stem cells, directly. Since the potential content of the stem cells can be transferred to the recipient cells by vesicles, small extracellular vesicles have recently become prominent agents. METHODS AND RESULTS: The wound-healing effect of extracellular vesicles derived from foreskin cells was investigated in both keratinocyte and endothelial cells. Migration assay, RT-PCR, Col1a1 ELISA and Western Blot experiments were utilized to reveal healing effect of EVs and its possible molecular pathways. EV-treated groups exhibited more proliferative, invasive, and migrative characteristics. When comparing to the control group, new vessel formation was induced in EV groups. An increase in gene levels of growth factors related to wound healing and change in the mitogen-activated protein kinase (MAPK) signaling pathway proteins in EV-treated groups were determined. Possible molecular mechanisms underlying cell movements were associated with the MAPK pathway. It was found that human foreskin cell EVs (hFS-Exo) may have a potential to heal wounds in a short period of time by triggering the MAPK pathway. CONCLUSIONS: hFS-Exo could be a new promising wound healing agent in the future.


Assuntos
Vesículas Extracelulares , Proteínas Quinases Ativadas por Mitógeno , Masculino , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células Endoteliais , Prepúcio do Pênis , 60489 , Vesículas Extracelulares/metabolismo , Movimento Celular
8.
Plant Cell Rep ; 43(4): 102, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499710

RESUMO

KEY MESSAGE: The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of H2O2 burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G. hirsutum) is the most widely cultivated cotton species with high economic value. To gain a better understanding of the role of the MAPK gene family, we conducted a comprehensive analysis of the MAPK gene family in cotton. In this study, a total of 55 GhMPK genes were identified from the whole genome of G. hirsutum. Through an investigation of the expression patterns under diverse stress conditions, we discovered that the majority of GhMPK family members demonstrated robust responses to abiotic stress, pathogen stress and pest stress. Furthermore, the overexpression of GhMPK31 in cotton leaves led to a hypersensitive response (HR)-like cell death phenotype and impaired the defense capability of cotton against herbivorous insects. Transcriptome and metabolomics data analysis showed that overexpression of GhMPK31 enhanced the expression of H2O2-related genes and reduced the accumulation of defensive related metabolites. The direct evidence of GhMPK31 interacting with GhRBOHB (H2O2-generating protein) were found by Y2H, BiFC, and LCI. Therefore, we propose that the increase of H2O2 content caused by overexpression of GhMPK31 resulted in HR-like cell death in cotton leaves while reducing the accumulation of defensive metabolites, ultimately leading to a decrease in the defense ability of cotton against herbivorous insects. This study provides valuable insights into the function of MAPK genes in plant resistance to herbivorous insects.


Assuntos
Gossypium , Peróxido de Hidrogênio , Gossypium/metabolismo , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
9.
Nat Commun ; 15(1): 2581, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519484

RESUMO

Myeloid cells are abundant and plastic immune cell subsets in the liver, to which pro-tumorigenic, inflammatory and immunosuppressive roles have been assigned in the course of tumorigenesis. Yet several aspects underlying their dynamic alterations in hepatocellular carcinoma (HCC) progression remain elusive, including the impact of distinct genetic mutations in shaping a cancer-permissive tumor microenvironment (TME). Here, in newly generated, clinically-relevant somatic female HCC mouse models, we identify cancer genetics' specific and stage-dependent alterations of the liver TME associated with distinct histopathological and malignant HCC features. Mitogen-activated protein kinase (MAPK)-activated, NrasG12D-driven tumors exhibit a mixed phenotype of prominent inflammation and immunosuppression in a T cell-excluded TME. Mechanistically, we report a NrasG12D cancer cell-driven, MEK-ERK1/2-SP1-dependent GM-CSF secretion enabling the accumulation of immunosuppressive and proinflammatory monocyte-derived Ly6Clow cells. GM-CSF blockade curbs the accumulation of these cells, reduces inflammation, induces cancer cell death and prolongs animal survival. Furthermore, GM-CSF neutralization synergizes with a vascular endothelial growth factor (VEGF) inhibitor to restrain HCC outgrowth. These findings underscore the profound alterations of the myeloid TME consequential to MAPK pathway activation intensity and the potential of GM-CSF inhibition as a myeloid-centric therapy tailored to subsets of HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Feminino , Carcinoma Hepatocelular/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular , Células Mieloides/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Imunossupressores , Inflamação/patologia
10.
Nat Commun ; 15(1): 2503, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509064

RESUMO

Targeting the mitogen-activated protein kinase (MAPK) cascade in pancreatic ductal adenocarcinoma (PDAC) remains clinically unsuccessful. We aim to develop a MAPK inhibitor-based therapeutic combination with strong preclinical efficacy. Utilizing a reverse-phase protein array, we observe rapid phospho-activation of human epidermal growth factor receptor 2 (HER2) in PDAC cells upon pharmacological MAPK inhibition. Mechanistically, MAPK inhibitors lead to swift proteasomal degradation of dual-specificity phosphatase 6 (DUSP6). The carboxy terminus of HER2, containing a TEY motif also present in extracellular signal-regulated kinase 1/2 (ERK1/2), facilitates binding with DUSP6, enhancing its phosphatase activity to dephosphorylate HER2. In the presence of MAPK inhibitors, DUSP6 dissociates from the protective effect of the RING E3 ligase tripartite motif containing 21, resulting in its degradation. In PDAC patient-derived xenograft (PDX) models, combining ERK and HER inhibitors slows tumour growth and requires cytotoxic chemotherapy to achieve tumour regression. Alternatively, MAPK inhibitors with trastuzumab deruxtecan, an anti-HER2 antibody conjugated with cytotoxic chemotherapy, lead to sustained tumour regression in most tested PDXs without causing noticeable toxicity. Additionally, KRAS inhibitors also activate HER2, supporting testing the combination of KRAS inhibitors and trastuzumab deruxtecan in PDAC. This study identifies a rational and promising therapeutic combination for clinical testing in PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
11.
J Cell Mol Med ; 28(6): e18146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426932

RESUMO

Acne vulgaris represents a chronic inflammatory condition, the pathogenesis of which is closely associated with the altered skin microbiome. Recent studies have implicated a profound role of Gram-negative bacteria in acne development, but there is a lack of antiacne agents targeting these bacteria. Polyphyllins are major components of Rhizoma Paridis with great anti-inflammatory potential. In this study, we aimed to evaluate the antiacne effects and the underlying mechanisms of PPH and a PPH-enriched Rhizoma Paridis extract (RPE) in treating the Gram-negative bacteria-induced acne. PPH and RPE treatments significantly suppressed the mRNA and protein expressions of interleukin (IL)-1ß and IL-6 in lipopolysaccharide (LPS)-induced RAW 264.7 and HaCaT cells, along with the intracellular reactive oxygen species (ROS) generation. Furthermore, PPH and RPE inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in LPS-induced RAW 264.7 cells. Based on molecular docking, PPH could bind to kelch-like ECH-associated protein 1 (KEAP1) protein. PPH and RPE treatments could activate nuclear factor erythroid 2-related factor 2 (NRF2) and upregulate haem oxygenase-1 (HO-1). Moreover, RPE suppressed the mitogen-activated protein kinase (MAPK) pathway. Therefore, PPH-enriched RPE showed anti-inflammatory and antioxidative effects in vitro, which is promising for alternative antiacne therapeutic.


Assuntos
Acne Vulgar , Saponinas , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/efeitos adversos , Saponinas/farmacologia , Saponinas/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Bactérias Gram-Negativas/metabolismo , Acne Vulgar/tratamento farmacológico , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo
12.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474080

RESUMO

Fleshy fruit ripening is a unique biological process that involves dramatic changes in a diverse array of cellular metabolisms. The regulation of these metabolisms is essentially mediated by cellular signal transduction of internal (e.g., hormones) and external cues (i.e., environmental stimuli). Mitogen-activated protein kinase (MAPK) signaling pathways play crucial roles in a diverse array of biological processes, such as plant growth, development and biotic/abiotic responses. Accumulating evidence suggests that MAPK signaling pathways are also implicated in fruit ripening and quality formation. However, while MAPK signaling has been extensively reviewed in Arabidopsis and some crop plants, the comprehensive picture of how MAPK signaling regulates fruit ripening and quality formation remains unclear. In this review, we summarize and discuss research in this area. We first summarize recent studies on the expression patterns of related kinase members in relation to fruit development and ripening and then summarize and discuss the crucial evidence of the involvement of MAPK signaling in fruit ripening and quality formation. Finally, we propose several perspectives, highlighting the research matters and questions that should be afforded particular attention in future studies.


Assuntos
Frutas , Desenvolvimento Vegetal , Frutas/metabolismo , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
13.
Plant Signal Behav ; 19(1): 2326238, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38493505

RESUMO

Mitogen-activated protein kinase (MPK) cascades are essential signal transduction components that control a variety of cellular responses in all eukaryotes. MPKs convert extracellular stimuli into cellular responses by the phosphorylation of downstream substrates. Although MPK cascades are predicted to be very complex, only limited numbers of MPK substrates have been identified in plants. Here, we used the kinase client (KiC) assay to identify novel substrates of MPK3 and MPK6. Recombinant MPK3 or MPK6 were tested against a large synthetic peptide library representing in vivo phosphorylation sites, and phosphorylated peptides were identified by high-resolution tandem mass spectrometry. From this screen, we identified 23 and 21 putative client peptides of MPK3 and MPK6, respectively. To verify the phosphorylation of putative client peptides, we performed in vitro kinase assay with recombinant fusion proteins of isolated client peptides. We found that 13 and 9 recombinant proteins were phosphorylated by MPK3 and MPK6. Among them, 11 proteins were proven to be the novel substrates of two MPKs. This study suggests that the KiC assay is a useful method to identify new substrates of MPKs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Arabidopsis/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilação , Peptídeos/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Nature ; 627(8003): 374-381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326616

RESUMO

Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.


Assuntos
Astrócitos , Comunicação Celular , Perfilação da Expressão Gênica , Memória de Longo Prazo , Neurônios , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/fisiologia , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Análise de Sequência de RNA , Imagem Individual de Molécula , Análise da Expressão Gênica de Célula Única , Ubiquitinação
15.
Toxicon ; 241: 107652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395262

RESUMO

T-2 toxin, a type-A trichothecene mycotoxin, exists ubiquitously in mildewed foods and feeds. Betulinic acid (BA), a pentacyclic triterpenoid derived from plants, has the effect of relieving inflammation and oxidative stress. The purpose of this study was to investigate whether BA mitigates lung impairment caused by T-2 toxin and elucidate the underlying mechanism. The results indicated that T-2 toxin triggered the inflammatory cell infiltration, morphological alterations and cell apoptosis in the lungs. It is gratifying that BA ameliorated T-2 toxin-caused lung injury. The protein expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) pathway and the markers of antioxidative capability were improved in T-2 toxin induced lung injury by BA mediated protection. Simultaneously, BA supplementation could suppress T-2 toxin-induced mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB)-dependent inflammatory response and mitochondrial apoptotic pathway. Therefore, T-2 toxin gave rise to pulmonary toxicity, but these changes were moderated by BA administration through regulation of the Nrf2/MAPK/NF-κB pathway, which maybe offer a viable alternative for mitigating the lung impairments caused by the mycotoxin.


Assuntos
Lesão Pulmonar , Toxina T-2 , Humanos , NF-kappa B/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Ácido Betulínico , Fator 2 Relacionado a NF-E2/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Triterpenos Pentacíclicos , Transdução de Sinais , Estresse Oxidativo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
16.
J Biol Chem ; 300(3): 105725, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325743

RESUMO

The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.


Assuntos
Proteínas 14-3-3 , 3',5'-AMP Cíclico Fosfodiesterases , Proteínas Quinases Dependentes de AMP Cíclico , Sistema de Sinalização das MAP Quinases , Humanos , Proteínas 14-3-3/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Fosfosserina/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo
17.
Biomolecules ; 14(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397480

RESUMO

JNK is named after c-Jun N-terminal kinase, as it is responsible for phosphorylating c-Jun. As a member of the mitogen-activated protein kinase (MAPK) family, JNK is also known as stress-activated kinase (SAPK) because it can be activated by extracellular stresses including growth factor, UV irradiation, and virus infection. Functionally, JNK regulates various cell behaviors such as cell differentiation, proliferation, survival, and metabolic reprogramming. Dysregulated JNK signaling contributes to several types of human diseases. Although the role of the JNK pathway in a single disease has been summarized in several previous publications, a comprehensive review of its role in multiple kinds of human diseases is missing. In this review, we begin by introducing the landmark discoveries, structures, tissue expression, and activation mechanisms of the JNK pathway. Next, we come to the focus of this work: a comprehensive summary of the role of the deregulated JNK pathway in multiple kinds of diseases. Beyond that, we also discuss the current strategies for targeting the JNK pathway for therapeutic intervention and summarize the application of JNK inhibitors as well as several challenges now faced. We expect that this review can provide a more comprehensive insight into the critical role of the JNK pathway in the pathogenesis of human diseases and hope that it also provides important clues for ameliorating disease conditions.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Diferenciação Celular
18.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38407425

RESUMO

Transforming growth factor ß (TGF-ß) and HER2 signaling collaborate to promote breast cancer progression. However, their molecular interplay is largely unclear. TGF-ß can activate mitogen-activated protein kinase (MAPK) and AKT, but the underlying mechanism is not fully understood. In this study, we report that TGF-ß enhances HER2 activation, leading to the activation of MAPK and AKT. This process depends on the TGF-ß type I receptor TßRI kinase activity. TßRI phosphorylates HER2 at Ser779, promoting Y1248 phosphorylation and HER2 activation. Mice with HER2 S779A mutation display impaired mammary morphogenesis, reduced ductal elongation, and branching. Furthermore, wild-type HER2, but not S779A mutant, promotes TGF-ß-induced epithelial-mesenchymal transition, cell migration, and lung metastasis of breast cells. Increased HER2 S779 phosphorylation is observed in human breast cancers and positively correlated with the activation of HER2, MAPK, and AKT. Our findings demonstrate the crucial role of TGF-ß-induced S779 phosphorylation in HER2 activation, mammary gland development, and the pro-oncogenic function of TGF-ß in breast cancer progression.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Neoplasias Pulmonares/secundário , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptor ErbB-2/química , Receptor ErbB-2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Mama/crescimento & desenvolvimento
19.
J Hazard Mater ; 467: 133687, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325101

RESUMO

This study investigates the influence of arsenic (As) and iron (Fe) on the molecular aspects of rice plants. The mRNA-abundance of As (OsLsi, OsPHT, OsNRAMP1, OsABCC1) and Fe (OsIRT, OsNRAMP1, OsYSL, OsFRDL1, OsVIT2, OsSAMS1, OsNAS, OsNAAT1, OsDMAS1, OsTOM1, OsFER) related genes has been observed in 12-d old As and Fe impacted rice varieties. Analyses of phytosiderophores synthesis and Fe-uptake genes affirm the existence of specialized Fe-uptake strategies in rice with varieties PB-1 and Varsha favouring strategy I and II, respectively. Expression of OsNAS3, OsVIT2, OsFER and OsABCC1 indicated PB-1's tolerance towards Fe and As. Analysis of mitogen-activated protein kinase cascade members (OsMKK3, OsMKK4, OsMKK6, OsMPK3, OsMPK4, OsMPK7, and OsMPK14) revealed their importance in the fine adjustment of As/Fe in the rice system. A conditional network map was generated based on the gene expression pattern that unfolded the differential dynamics of both rice varieties. The mating based split ubiquitin system determined the interaction of OsIRT1 with OsMPK3, and OsLsi1 with both OsMPK3 and OsMPK4. In-silico tools also confirmed the binding affinities of OsARM1 with OsLsi1, OsMPK3 and OsMPK4, and of OsIDEF1/OsIRO2 with OsIRT1 and OsMPK3, supporting our hypothesis that OsARM1, OsIDEF1, OsIRO2 were active in the connections discovered by mbSUS.


Assuntos
Arsênio , Oryza , Ferro/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oryza/genética , Oryza/metabolismo , Arsênio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
20.
Diabetes ; 73(5): 780-796, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394639

RESUMO

Increasing evidence implicates chronic inflammation as the main pathological cause of diabetic nephropathy (DN). Exploration of key targets in the inflammatory pathway may provide new treatment options for DN. We aimed to investigate the role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) in macrophages and its association with DN. The upregulated phosphorylation of SHP2 was detected in macrophages in both patients with diabetes and in a mouse model. Using macrophage-specific SHP2-knockout (SHP2-MKO) mice and SHP2fl/fl mice injected with streptozotocin (STZ), we showed that SHP2-MKO significantly attenuated renal dysfunction, collagen deposition, fibrosis, and inflammatory response in mice with STZ-induced diabetes. RNA-sequencing analysis using primary mouse peritoneal macrophages (MPMs) showed that SHP2 deletion mainly affected mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways as well as MAPK/NF-κB-dependent inflammatory cytokine release in MPMs. Further study indicated that SHP2-deficient macrophages failed to release cytokines that induce phenotypic transition and fibrosis in renal cells. Administration with a pharmacological SHP2 inhibitor, SHP099, remarkably protected kidneys in both type 1 and type 2 diabetic mice. In conclusion, these results identify macrophage SHP2 as a new accelerator of DN and suggest that SHP2 inhibition may be a therapeutic option for patients with DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Inflamação/patologia , Citocinas/metabolismo , Camundongos Knockout , Macrófagos/metabolismo , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...